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Abstract.   Remote sensing is increasingly needed to meet the critical demand for estimates 
of forest structure and composition at landscape to continental scales. Hyperspectral images 
can detect tree canopy properties, including species identity, leaf chemistry and disease. Tree 
growth rates are related to these measurable canopy properties but whether growth can be 
directly predicted from hyperspectral data remains unknown. We used a single hyperspectral 
image and light detection and ranging-derived elevation to predict growth rates for 20 tropical 
tree species planted in experimental plots. We asked whether a consistent relationship between 
spectral data and growth rates exists across all species and which spectral regions, associated 
with different canopy chemical and structural properties, are important for predicting growth 
rates. We found that a linear combination of narrowband indices and elevation is correlated 
with standardized growth rates across all 20 tree species (R2 = 53.70%). Although wavelengths 
from the entire visible-to-shortwave infrared spectrum were involved in our analysis, results 
point to relatively greater importance of visible and near-infrared regions for relating canopy 
reflectance to tree growth data. Overall, we demonstrate the potential for hyperspectral data to 
quantify tree demography over a much larger area than possible with field-based methods in 
forest inventory plots.

Key words:   canopy biology; field planting trials; forest dynamics; hyperspectral; light detection and 
ranging; Panama; plantation; precision forestry; reforestation; remote sensing; tree demography; tropical 
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Introduction

Measuring forest dynamics over large areas is needed 
to understand ecological processes, including the terres-
trial carbon cycle (Antonarakis et al. 2014) and forest 
succession (Holl and Aide 2011), at landscape and 
regional scales. In particular, tree growth and survival 
rates are keys to understanding population and com-
munity dynamics that lead to changes in biomass and 
species composition over time (Purves and Pacala 2008, 
Caughlin et  al. 2016). Tree growth is most often 
measured in field-based forest inventory plots, using 
repeated stem measurements of diameter at breast 
height (ΔDBH). Reliance on forest inventory plots for 
models of forest dynamics is problematic when applied 

to large spatial extents, because logistical constraints 
limit field measurements of ΔDBH, and extrapolating 
small-scale plot data to larger scales can propagate 
spatial errors (Marvin et al. 2014). Accurate estimates 
of tree demographic rates, including ΔDBH, over large 
spatial extents could greatly improve forest dynamics 
models (Antonarakis et  al. 2014) and ultimately con-
tribute to more informed forest management at large 
scales (Holl and Aide 2011). For example, large 
(>100,000  ha) tree plantations are an increasingly 
common land use across the tropics (Fagan et al. 2015). 
While improved management of these plantations could 
benefit biodiversity conservation and limit environ-
mental degradation (Hartley 2002), their large spatial 
extent challenges the ability of plot-based inventories 
to monitor program success and allocate site-level inter-
ventions (Kellndorfer et al. 2003).

Remote-sensing data could provide a solution to the 
spatial mismatch between land management and forest 
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inventory data. For example, time series data on forest 
structure from high-spatial resolution aerial images have 
detected emergent tree mortality (Clark et  al. 2004), 
quantified gap dynamics (Kellner and Asner 2014) and 
forest height and biomass dynamics (Dubayah et  al. 
2010), but time series of images must be extremely well 
matched in terms of geolocation and data quality to 
measure the subtle change in height or crown size asso-
ciated with tree growth (Yu et al. 2006). Alternatively, 
airborne visible-to-shortwave infrared (VSWIR) and 
light detection and ranging (LiDAR) systems can measure 
forest canopy properties, such as tree species compo-
sition (Fagan et  al. 2015) and canopy size structure 
(Kellner and Asner 2009), with high spatial resolution 
and fidelity at a single point in time.

Rather than directly measuring changes in crown size, 
we propose estimating tree growth (as ΔDBH), by detecting 
growth-related canopy properties in a single hyperspectral 
aerial image. Multiple canopy properties, including foliar 
nutrients (Sims et al. 2013, Serbin et al. 2014, Singh et al. 
2015), plant stress (Pontius et al. 2008), and plant disease 
(Delalieux et al. 2009, Shafri and Hamdan 2009) are meas-
urable using hyperspectral remote-sensing data and are 
directly related to tree growth rates (Cornelissen et  al. 
1997, Ollinger and Smith 2005). These measurable prop-
erties of tree crowns may provide a link between canopy 
spectral reflectance and ΔDBH that could enable reliable 
detection of tree growth rates from a single image.

As an initial test of whether remote sensing can detect 
tree growth differences, we use a single image to predict 
ΔDBH rates from pure species plots of nine-year-old 
trees planted to assess the potential of numerous species 
for reforestation projects (Park et  al. 2010). Our study 
has direct relevance for monitoring growth in tree plan-
tations, particularly where resources on the ground are 
limited and projects are large. Spatial management plans 
to allocate different interventions within a single plan-
tation can lead to biodiversity gains while maintaining 
acceptable profit margins (Hartley 2002). Allocating spa-
tially targeted interventions will require measuring tree 
health and performance across the entire plantation, a 
task that could be aided by remote-sensing data (Delalieux 
et al. 2009, Sims et al. 2013, Vastaranta et al. 2014). Our 
study system—young, homogenous stands in an experi-
mental forest—enabled us to determine whether tree 
growth rates can be predicted from a single aerial image 
across a range of species and environmental conditions. 
We address two questions: (1) Is there a relationship 
between spectral data and ΔDBH across twenty tropical 
tree species that vary widely in functional traits and phy-
logeny? (2) Which spectral regions, associated with dif-
ferent canopy chemical and structural properties, are 
important for predicting ΔDBH?

Methods

The ΔDBH measurements are from an experiment 
designed to quantify the effect of environmental variation 

on tree species suitability for restoration (Park et  al. 
2010).  The experiment includes replicate plots in three 
completely randomized, spatially separated blocks across 
an elevation gradient (range 23–151  m) with different 
topography and edaphic conditions. Our study takes 
place in Los Santos Province in Southwestern Panama 
(7°25′14.3″ N, 80°09′49.1″ W). The study site has a pro-
nounced dry season from December through March, with 
an average of 1,700 mm of rainfall mostly falling during a 
rainy season from late April to late November. Pure 
species plots were planted with 20 seedlings of 1 of 20 tree 
species in 2003, and thinned to 10 trees per plot in 2005. 
Growth for all live tree stems in plots was measured as 
ΔDBH between 2008 and 2010. The experimental 
design  ensures a range of intraspecific growth rates 
across many species with diverse growth rates, functional 
traits, and taxonomy, including 13 different families 
(Appendix S1).

Remotely sensed data were collected in January 2012 
by the Carnegie Airborne Observatory-2, using a VSWIR 
infrared spectrometer (380–2,510  nm) with 2-m reso-
lution and a dual-laser waveform LiDAR scanner with 
1.3-m resolution (Appendix S2; Asner et  al. 2012). In 
December 2013 and July 2014, we mapped canopy 
boundaries of each plot with a handheld GPS unit and 
tablet displaying the aerial image (Fig.  1). In total, we 
mapped 87 single-species plots with plot areas ranging 
from 25 to 450 m2. Because the individual trees in our 
study were relatively small, with a canopy area of 24.05 ± 
23.01 m2 (mean ± SD), and could not be distinguished in 
the images with confidence, matching pixels to individual 
tree canopies, rather than single species plot boundaries, 
was not possible.

The goal of our analysis was to predict plot-level 
growth as a continuous variable for all 20 species 
together. Absolute ΔDBH growth rates varied widely 
between species (Appendix S1: Table S1), from 
11.11  ±  5.52 mm/yr for Colubrina glandulosa to 
45.72  ±  22.00  mm/yr for Erythrina fusca. To compare 
fast and slow-growing plots across species, we stand-
ardized ΔDBH growth rates on individuals within each 
species by centering around the mean and dividing by 
two standard deviations (Gelman 2008). Plot-level 
means of the standardized growth rate were then used as 
the response variable in the model. After standardi-
zation, plots near the mean growth rate of each species 
have a value of zero, while plots with growth rates two 
standard deviations below and above the mean have 
values of −1 and 1, respectively. This standardized 
growth rate can be interpreted as an index of plot-level 
growth rate, relative to plots of the same species. Using 
standardized growth rate as the response variable in our 
analyses increases our confidence that we are detecting 
intraspecific variation in tree growth rate, rather than 
species differences across our diverse set of 20 study 
species. However, in Appendix S3, we demonstrate that 
our approach can also predict absolute growth rate on 
the original scale of mm/yr.
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spectral reflectance and elevation. To match the spatial 
scale of the tree growth data, we aggregated elevation and 
hyperspectral reflectance to the plot level by taking the 
mean value of all pixels within each plot. Because we 
expected growth rates to vary with elevation (Park et al. 
2010), our model also includes per-plot elevation as a pre-
dictor variable, produced using a digital elevation model 
(DEM) derived from the LiDAR data. We found no evi-
dence for spatial autocorrelation in the residuals of the 
final model.

The high-dimensional structure of the hyperspectral 
data, including multicollinearity (Asner et  al. 2012), 
presents a challenge to identifying clear predictive rela-
tionships. Narrowband indices of wavelengths represent 
one way to construct predictor variables that can reduce 
illumination differences between pixels and isolate 
absorption features related to canopy chemistry (Shafri 
and Hamdan 2009, Roberts et al. 2011). One approach 
to identify narrowband indices with predictive power is 

to evaluate the performance of all possible two-band 
combinations (e.g., Delalieux et  al. 2009). We build 
upon this approach by iteratively selecting the single 
narrowband index, defined here as the normalized dif-
ference between two narrowbands, with the best pre-
dictive power out of all possible narrowband indices 
and compiling multiple narrowband indices with high 
predictive power using least squares regression. We used 
three strategies to avoid overfitting. First, we selected 
individual narrowband indices using the predicted 
residual sum of squares (PRESS) statistic, an out-of-
sample validation metric that penalizes for overfitting 
(Chen et al. 2004). Second, we used a randomization test 
to determine a cut-off for the number of narrowband 
indices to include in the final model, based on the prob-
ability of observing a value of the PRESS statistic sig-
nificantly lower than random chance. Third, we evaluate 
predictive power of the least squares algorithm using 
leave-one-out cross-validation, and present out-of-
sample R2 and RMSE as metrics of model fit. We 

Fig. 1.  Mapped tree plots. Each yellow polygon corresponds to one pure-species plot overlain on a digital elevation model 
displaying hill shade. The visible color image displays a subset of the hyperspectral visible-to-shortwave infrared data.
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describe our least squares algorithm in more detail in 
Appendix S4, and compare our results to those from 
partial least squares regression, another approach for 
analyzing high-dimensional data (e.g., Serbin et  al. 
2014, Asner et al. 2015, Singh et al. 2015), in Appendix 
S3.

Results

Out-of-sample R2 for our final model was 53.70%, indi-
cating that a single image can predict landscape variation 
in growth rates across 20 species (Fig. 2). In total, our 
least squares algorithm selected six narrowband indices 
to predict standardized growth rate (Appendix S4: Fig. 
S2). We found diminishing returns in predictive power as 
additional variables were added. Wavelengths selected 
for narrowband indices in our growth index include the 
entire range of the measured spectrum, from the visible 
to shortwave regions. The first band index selected, 
involving the near-infrared (NIR) and shortwave infrared 
(SWIR) regions (810 and 2,122  nm) led to the biggest 
increase in R2 (14.21%) and biggest proportional decrease 
in the PRESS statistic (18.47%). However, five of these 
six narrowband indices had one or both bands located in 
the visible region (from 470 to 700  nm). Limiting the 
wavelengths included in the least squares algorithm to the 
visible region between 470 and 750  nm, a decrease in 
dimensionality from 150 to 31 narrow bands, only 
decreased R2 by 5.54% (Appendix S5). Although a model 
with elevation alone was poor at predicting growth, with 
an R2 of 2.71%, elevation had a significant effect in the 
full model (Appendix S6).

Discussion

We demonstrate the potential for airborne remote-
sensing data to quantify spatial variation in one metric of 
tree demography (ΔDBH) at large spatial extents. Our 
methods do not depend on the acquisition of a lengthy 
time series of remote-sensing data or measurement of 
foliar traits and, if repeatable at other sites, could be 
immediately applied to existing and soon-to-be collected 
(e.g., National Ecological Observatory Network; Keller 
et  al. 2008) hyperspectral images. While ΔDBH is a 
common metric of tree demography due to the ease of 
measuring stem diameter growth in the field, hyper-
spectral data could provide a wider range of metrics 
linked to tree physiology, such as foliar nutrients (Ollinger 
and Smith 2005, Axelsson et al. 2013, Sims et al. 2013, 
Asner et  al. 2015, Singh et  al. 2015) and chlorophyll 
fluorescence (Calderón et  al. 2013). Our results extend 
previous studies that demonstrate that a single remotely 
sensed image can measure tree health and performance 
for one, or perhaps a few, species (Pontius et al. 2008, 
Delalieux et al. 2009, Shafri and Hamdan 2009), by sug-
gesting a general correlation between narrowband indices 
and ΔDBH across a wide range of species with varying 
functional traits at a single site. Although whether tree 
growth can be measured remotely in mixed-age, mixed-
species forests remains an open question, our results 
suggest that hyperspectral data can accurately predict 
ΔDBH in even-aged monocultures, including tropical 
tree plantations.

For all tree species considered together, the R2 for our 
best-fitting model was 53.70%, with an RMSE of 2.46. 

Fig. 2.  Predicted growth rates from hyperspectral data vs. observed growth rates.
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The predictive power of a model for standardized growth 
across species suggests that predicting whether a tree is a 
fast or slow grower relative to conspecifics is possible 
even when species identity is unknown. The wavelengths 
selected in our growth index include the entire range of 
the measured spectrum, from the visible to shortwave 
regions. However, repeating the analysis without the 
near-infrared and shortwave regions revealed that the 
visible and shortest wavelengths of the near-infrared 
regions (up to 750  nm) of the spectrum contribute the 
majority of predictive power. We found that LiDAR-
derived elevation measurements initially contributed 
very little to predictive power (R2 for elevation-only 
model = 2.71%), but nonetheless had a strong and signif-
icant effect in the full model (Appendix S6). At our study 
site, topographic differences in soil quality and water 
availability influence tree growth rates (Park et al. 2010). 
Our results suggest that elevational differences may lead 
to different canopy traits, such as leaf phenology or foliar 
nutrients that influence remote detection of tree growth 
rates.

The narrowband indices selected in our model suggest 
canopy properties that may provide a link between reflec-
tance and growth that can form the basis for future inves-
tigations. Our study is a departure from previously used 
approaches to relate optical remote sensing to forest pro-
ductivity that focus on the underlying mechanism of light 
capture and efficiency (Garbulsky et al. 2011) or foliar 
chemical composition (Ollinger and Smith 2005, Serbin 
et  al. 2014, Singh et  al. 2015). The advantage of our 
approach is that we are not constrained to specific wave-
lengths or measured foliar traits and can identify emergent 
spectral regions and traits that may be driving growth for 
a particular site or species. For example, the first band 
index selected in our across-species analysis, involving 
the NIR and SWIR regions (810 divided by 2,122 nm), is 
indicative of water content, a key canopy trait affecting 
both growth and reflectance (Roberts et al. 2011). Similar 
narrowband indices related to water absorption have 
been correlated with vegetation water content (Chen 
et al. 2005), and we suggest that leaf water content is a key 
variable for forest dynamics in this ecosystem that can be 
measured with remote sensing. Another important 
spectral region for predicting tree growth is between 470 
and 750 nm, including five of the six narrowband indices 
selected. These wavelengths measure pigments that play 
a critical role in carbon uptake and photoprotection in 
tropical trees (Contin et al. 2014), including chlorophyll, 
carotenoids, and anthocyanins (Roberts et al. 2011). The 
variation in pigments is likely related to leaf senescence 
during the transition from the wet to dry season (when 
the data was collected), and may be indicative of different 
phenologic strategies of growth across species. If images 
were collected at peak greenness, which is the case for 
many data sources, wavelengths and traits may be more 
likely to reflect differences in light capture and light use 
efficiency. The identified wavelengths point to causal 
explanations for the observed correlation between tree 

growth and remote-sensing data; hypotheses that can be 
tested by pairing direct measurements of foliar chemistry 
and other canopy properties with spectral data.

The applicability of using a single hyperspectral 
image to discriminate growth differences needs to be 
tested for other sites and forest types. Given the under-
lying relationship between growth and canopy chem-
istry (Cornelissen et al. 1997, Ollinger and Smith 2005), 
and the growing body of evidence that canopy chem-
istry can be quantified from hyperspectral data (Sims 
et al. 2013, Singh et al. 2015), we believe this approach 
has strong potential to detect growth differences 
between even-aged plots at other sites. Just as the 
strongest wavelengths for determining leaf chemistry 
may vary across sites (Casas et al. 2014), the exact wave-
length bands that are strongly related to growth will 
likely vary across sites. Extending our methods to 
predict ΔDBH for trees in a natural, mixed-age, mixed-
species forest will present several challenges. First, pre-
dicting tree growth rates in those forests may require 
resolving individual tree canopies with advanced seg-
mentation techniques. Second, our results suggest that 
we are capturing canopy spectral properties that are 
important for tree growth rates of small plots of ~10 
trees. Between these even-aged plots, variation in tree 
growth is likely due to site factors (e.g., soil moisture). 
In natural forests, individual variation in tree growth is 
higher and related to competition for light between 
different-sized trees, although variations in crown size 
and height can be quantified by LiDAR and used as an 
additional predictive variable (Kellner and Asner 2014).

The ability to quantify the state of a tree in fine detail 
over large areas could be transformational both for our 
basic understanding of forest dynamics and for many 
applied forest management projects. One application of 
remote-sensing detection of tree growth rates is precision 
forestry, i.e., silvicultural treatments at landscape scales 
tailored to observed growth variation. Previous remote-
sensing-based precision forestry has mostly focused on 
assessing differences in standing stocks, typically 
measured with LiDAR and radar data (Kellndorfer et al. 
2003). We propose that hyperspectral imagery could 
detect spatial differences in growth rate before differ-
ences in woody biomass are measurable. Predictive algo-
rithms based on aerial imagery could then enable 
fine-scale interventions, for example, fertilizer treatments 
for plots with low growth rates due to nutrient defi-
ciencies detected in leaf reflectance (Sims et  al. 2013). 
These kinds of early detection systems are well known in 
agricultural systems, where remote sensing of crop per-
formance, followed by spatially targeted interventions, 
can improve crop production while reducing external 
inputs (Gebbers and Adamchuk 2010). We show here 
that similar types of performance information for trees 
can be derived from hyperspectral data, despite the 
greater structural complexity and species diversity of 
many forests. Our results point to a future where a single 
flyover by an aerial observatory could provide data to 
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inform spatial interventions and contribute to sustainable 
decision making in forested ecosystems.

Acknowledgments

We thank the Carnegie Airborne Observatory and 
PRORENA staff for data collection and processing support. 
Funding for PRORENA is from the Frank Levinson Family 
Foundation and the School of Forestry and Environmental 
Studies, Yale University. T. T. Caughlin was supported by NSF 
grant #1415297.  Airborne data collection, processing and anal-
ysis was funded by the Grantham Foundation for the Protection 
of the Environment and William R. Hearst III. The Carnegie 
Airborne Observatory has been made possible by grants and 
donations to G.P. Asner from the Avatar Alliance Foundation, 
Margaret A. Cargill Foundation, David and Lucile Packard 
Foundation, Gordon and Betty Moore Foundation, Grantham 
Foundation for the Protection of the Environment, W. M. Keck 
Foundation, John D. and Catherine T. MacArthur Foundation, 
Andrew Mellon Foundation, Mary Anne Nyburg Baker and 
G. Leonard Baker Jr, and William R. Hearst III.

Literature Cited

Antonarakis, A. S., J. W. Munger, and P. R. Moorcroft. 2014. 
Imaging spectroscopy- and lidar-derived estimates of canopy 
composition and structure to improve predictions of forest 
carbon fluxes and ecosystem dynamics. Geophysical Research 
Letters 41:2013GL058373.

Asner, G. P., D. E. Knapp, J. Boardman, R. O. Green, 
T.  Kennedy-Bowdoin, M. Eastwood, R. E. Martin, 
C.  Anderson, and C. B. Field. 2012. Carnegie Airborne 
Observatory-2: increasing science data dimensionality via 
high-fidelity multi-sensor fusion. Remote Sensing of 
Environment 124:454–465.

Asner, G. P., R. E. Martin, C. B. Anderson, and D. E. Knapp. 
2015. Quantifying forest canopy traits: imaging spectroscopy 
versus field survey. Remote Sensing of Environment 
158:15–27.

Axelsson, C., A. K. Skidmore, M. Schlerf, A. Fauzi, and 
W. Verhoef. 2013. Hyperspectral analysis of mangrove foliar 
chemistry using PLSR and support vector regression. 
International Journal of Remote Sensing 34:1724–1743.

Calderón, R., J. A. Navas-Cortés, C. Lucena, and P. J. Zarco-
Tejada. 2013. High-resolution airborne hyperspectral and 
thermal imagery for early detection of Verticillium wilt of ol-
ive using fluorescence, temperature and narrow-band spectral 
indices. Remote Sensing of Environment 139:231–245.

Casas, A., D. Riaño, S. L. Ustin, P. Dennison, and J. Salas. 
2014. Estimation of water-related biochemical and biophysi-
cal vegetation properties using multitemporal airborne hyper-
spectral data and its comparison to MODIS spectral response. 
Remote Sensing of Environment 148:28–41.

Caughlin, T. T., S. Elliott, and J. W. Lichstein. 2016. When does 
seed limitation matter for scaling up reforestation from pat
ches to landscapes? Ecological Applications, in press. DOI: 
10.1002/eap.1410

Chen, S., X. Hong, C. J. Harris, and P. M. Sharkey. 2004. 
Sparse modeling using orthogonal forward regression with 
PRESS statistic and regularization. IEEE Transactions on 
Systems, Man, and Cybernetics, Part B: Cybernetics 34: 
898–911.

Chen, D., J. Huang, and T. J. Jackson. 2005. Vegetation water 
content estimation for corn and soybeans using spectral indi-
ces derived from MODIS near-and short-wave infrared 
bands. Remote Sensing of Environment 98:225–236.

Clark, D. B., C. S. Castro, L. D. A. Alvarado, and J. M. Read. 
2004. Quantifying mortality of tropical rain forest trees using 
high-spatial-resolution satellite data. Ecology Letters 
7:52–59.

Contin, D. R., H. H. Soriani, I. Hernández, R. P. Furriel, S. 
Munné-Bosch, and C. A. Martinez. 2014. Antioxidant and 
photoprotective defenses in response to gradual water stress 
under low and high irradiance in two Malvaceae tree species 
used for tropical forest restoration. Trees 28:1705–1722.

Cornelissen, J. H. C., M. J. A. Werger, P. Castro-Diez, J. W. A. 
Van Rheenen, and A. P. Rowland. 1997. Foliar nutrients in 
relation to growth, allocation and leaf traits in seedlings of a 
wide range of woody plant species and types. Oecologia 
111:460–469.

Delalieux, S., B. Somers, W. W. Verstraeten, J. A. N. Van 
Aardt, W. Keulemans, and P. Coppin. 2009. Hyperspectral 
indices to diagnose leaf biotic stress of apple plants, consider-
ing leaf phenology. International Journal of Remote Sensing 
30:1887–1912.

Dubayah, R. O., S. L. Sheldon, D. B. Clark, M. A. Hofton, J. B. 
Blair, G. C. Hurtt, and R. L. Chazdon. 2010. Estimation of 
tropical forest height and biomass dynamics using lidar re-
mote sensing at La Selva, Costa Rica. Journal of Geophysical 
Research: Biogeosciences 115:G00E09.

Fagan, M. E., R. S. DeFries, S. E. Sesnie, J. P. Arroyo-Mora, 
C. Soto, A. Singh, P. A. Townsend, and R. L. Chazdon. 2015. 
Mapping species composition of forests and tree plantations 
in Northeastern Costa Rica with an integration of hyper
spectral and multitemporal landsat imagery. Remote Sensing 
7:5660–5696.

Garbulsky, M. F., J. Peñuelas, J. Gamon, Y. Inoue, and 
I.  Filella. 2011. The photochemical reflectance index (PRI) 
and the remote sensing of leaf, canopy and ecosystem radia-
tion use efficiencies: A review and meta-analysis. Remote 
Sensing of Environment 115:281–297.

Gebbers, R., and V. I. Adamchuk. 2010. Precision agriculture 
and food security. Science 327:828–831.

Gelman, A. 2008. Scaling regression inputs by dividing by two 
standard deviations. Statistics in Medicine 27:2865–2873.

Hartley, M. J. 2002. Rationale and methods for conserving bio-
diversity in plantation forests. Forest Ecology and Manage
ment 155:81–95.

Holl, K. D., and T. M. Aide. 2011. When and where to actively 
restore ecosystems? Forest Ecology and Management 261: 
1558–1563.

Keller, M., D. S. Schimel, W. W. Hargrove, and F. M. Hoffman. 
2008. A continental strategy for the National Ecological 
Observatory Network. Frontiers in Ecology and the Envir
onment 6:282–284.

Kellndorfer, J. M., M. C. Dobson, J. D. Vona, and M. Clutter. 
2003. Toward precision forestry: plot-level parameter 
retrieval for slash pine plantations with JPL AIRSAR. IEEE 
Transactions on Geoscience and Remote Sensing 41: 
1571–1582.

Kellner, J. R., and G. P. Asner. 2009. Convergent structural 
responses of tropical forests to diverse disturbance regimes. 
Ecology Letters 12:887–897.

Kellner, J. R., and G. P. Asner. 2014. Winners and losers in the 
competition for space in tropical forest canopies. Ecology 
Letters 17:556–562.

Marvin, D. C., G. P. Asner, D. E. Knapp, C. B. Anderson, 
R. E. Martin, F. Sinca, and R. Tupayachi. 2014. Amazonian 
landscapes and the bias in field studies of forest structure and 
biomass. Proceedings of the National Academy of Sciences 
USA 111:E5224–E5232.

Ollinger, S. V., and M.-L. Smith. 2005. Net primary production 
and canopy nitrogen in a temperate forest landscape: an 

http://dx.doi.org/10.1002/eap.1410


HYPERSPECTRAL DATA PREDICTS TREE GROWTHDecember 2016 2373
C

om
m

u
n

ica
tion

s
analysis using imaging spectroscopy, modeling and field data. 
Ecosystems 8:760–778.

Park, A., M. van Breugel, M. S. Ashton, M. Wishnie, 
E. Mariscal, J. Deago, D. Ibarra, N. Cedeño, and J. S. Hall. 
2010. Local and regional environmental variation influences 
the growth of tropical trees in selection trials in the Republic 
of Panama. Forest Ecology and Management 260:12–21.

Pontius, J., M. Martin, L. Plourde, and R. Hallett. 2008. 
Ash decline assessment in emerald ash borer-infested regions: 
a test of tree-level, hyperspectral technologies. Remote 
Sensing of Environment 112:2665–2676.

Purves, D., and S. Pacala. 2008. Predictive models of forest 
dynamics. Science 320:1452–1453.

Roberts, D. A., K. L. Roth, and R. L. Perroy. 2011. 
Hyperspectral vegetation indices. CRC Press, Boca Raton, 
Florida, USA.

Serbin, S. P., A. Singh, B. E. McNeil, C. C. Kingdon, and P. A. 
Townsend. 2014. Spectroscopic determination of leaf mor-
phological and biochemical traits for northern temperate and 
boreal tree species. Ecological Applications 24:1651–1669.

Shafri, H. Z., and N. Hamdan. 2009. Hyperspectral imagery for 
mapping disease infection in oil palm plantation using 

vegetation indices and red edge techniques. American Journal 
of Applied Sciences 6:1031–1035.

Sims, N. C., D. Culvenor, G. Newnham, N. C. Coops, and 
P. Hopmans. 2013. Towards the operational use of satellite 
hyperspectral image data for mapping nutrient status and fer-
tilizer requirements in Australian plantation forests. IEEE 
Journal of Selected Topics in Applied Earth Observations 
and Remote Sensing 6:320–328.

Singh, A., S. P. Serbin, B. E. McNeil, C. C. Kingdon, and 
P.  A.  Townsend. 2015. Imaging spectroscopy algorithms 
for  mapping canopy foliar chemical and morphological 
traits  and their uncertainties. Ecological Applications 25: 
2180–2197.

Vastaranta, M., N. Saarinen, V. Kankare, M. Holopainen, H. 
Kaartinen, J. Hyyppä, and H. Hyyppä. 2014. Multisource 
single-tree inventory in the prediction of tree quality variables 
and logging recoveries. Remote Sensing 6:3475–3491.

Yu, X., J. Hyyppä, A. Kukko, M. Maltamo, and H. Kaartinen. 
2006. Change detection techniques for canopy height 
growth  measurements using airborne laser scanner data. 
Photogrammetric Engineering & Remote Sensing 72: 
1339–1348.

Supporting Information

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.1436/suppinfo

Data Availability

Tree growth data are available online at http://dx.doi.org/10.5061/dryad.t6md2. R code for the least squares algorithm is 
available online at http://dx.doi.org/10.5281/zenodo.61972.

http://onlinelibrary.wiley.com/doi/10.1002/eap.1436/suppinfo



