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A hyperspectral image can predict tropical tree growth rates in
single-species stands
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Abstract. Remote sensing is increasingly needed to meet the critical demand for estimates
of forest structure and composition at landscape to continental scales. Hyperspectral images
can detect tree canopy properties, including species identity, leaf chemistry and disease. Tree
growth rates are related to these measurable canopy properties but whether growth can be
directly predicted from hyperspectral data remains unknown. We used a single hyperspectral
image and light detection and ranging-derived elevation to predict growth rates for 20 tropical
tree species planted in experimental plots. We asked whether a consistent relationship between
spectral data and growth rates exists across all species and which spectral regions, associated
with different canopy chemical and structural properties, are important for predicting growth
rates. We found that a linear combination of narrowband indices and elevation is correlated
with standardized growth rates across all 20 tree species (R? = 53.70%). Although wavelengths
from the entire visible-to-shortwave infrared spectrum were involved in our analysis, results
point to relatively greater importance of visible and near-infrared regions for relating canopy
reflectance to tree growth data. Overall, we demonstrate the potential for hyperspectral data to
quantify tree demography over a much larger area than possible with field-based methods in
forest inventory plots.

Key words:  canopy biology, field planting trials; forest dynamics; hyperspectral; light detection and
ranging; Panama; plantation; precision forestry, reforestation; remote sensing; tree demography; tropical
forest.

INTRODUCTION to large spatial extents, because logistical constraints
limit field measurements of ADBH, and extrapolating
small-scale plot data to larger scales can propagate
spatial errors (Marvin et al. 2014). Accurate estimates
of tree demographic rates, including ADBH, over large
spatial extents could greatly improve forest dynamics
models (Antonarakis et al. 2014) and ultimately con-
tribute to more informed forest management at large
scales (Holl and Aide 2011). For example, large
(>100,000 ha) tree plantations are an increasingly
common land use across the tropics (Fagan et al. 2015).
While improved management of these plantations could
benefit biodiversity conservation and limit environ-
mental degradation (Hartley 2002), their large spatial
extent challenges the ability of plot-based inventories
to monitor program success and allocate site-level inter-

Measuring forest dynamics over large areas is needed
to understand ecological processes, including the terres-
trial carbon cycle (Antonarakis et al. 2014) and forest
succession (Holl and Aide 2011), at landscape and
regional scales. In particular, tree growth and survival
rates are keys to understanding population and com-
munity dynamics that lead to changes in biomass and
species composition over time (Purves and Pacala 2008,
Caughlin et al. 2016). Tree growth is most often
measured in field-based forest inventory plots, using
repeated stem measurements of diameter at breast
height (ADBH). Reliance on forest inventory plots for
models of forest dynamics is problematic when applied
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ventions (Kellndorfer et al. 2003).
Remote-sensing data could provide a solution to the
spatial mismatch between land management and forest
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inventory data. For example, time series data on forest
structure from high-spatial resolution aerial images have
detected emergent tree mortality (Clark et al. 2004),
quantified gap dynamics (Kellner and Asner 2014) and
forest height and biomass dynamics (Dubayah et al.
2010), but time series of images must be extremely well
matched in terms of geolocation and data quality to
measure the subtle change in height or crown size asso-
ciated with tree growth (Yu et al. 2006). Alternatively,
airborne visible-to-shortwave infrared (VSWIR) and
light detection and ranging (LiDAR) systems can measure
forest canopy properties, such as tree species compo-
sition (Fagan et al. 2015) and canopy size structure
(Kellner and Asner 2009), with high spatial resolution
and fidelity at a single point in time.

Rather than directly measuring changes in crown size,
we propose estimating tree growth (as ADBH), by detecting
growth-related canopy properties in a single hyperspectral
aerial image. Multiple canopy properties, including foliar
nutrients (Sims et al. 2013, Serbin et al. 2014, Singh et al.
2015), plant stress (Pontius et al. 2008), and plant disease
(Delalieux et al. 2009, Shafri and Hamdan 2009) are meas-
urable using hyperspectral remote-sensing data and are
directly related to tree growth rates (Cornelissen et al.
1997, Ollinger and Smith 2005). These measurable prop-
erties of tree crowns may provide a link between canopy
spectral reflectance and ADBH that could enable reliable
detection of tree growth rates from a single image.

As an initial test of whether remote sensing can detect
tree growth differences, we use a single image to predict
ADBH rates from pure species plots of nine-year-old
trees planted to assess the potential of numerous species
for reforestation projects (Park et al. 2010). Our study
has direct relevance for monitoring growth in tree plan-
tations, particularly where resources on the ground are
limited and projects are large. Spatial management plans
to allocate different interventions within a single plan-
tation can lead to biodiversity gains while maintaining
acceptable profit margins (Hartley 2002). Allocating spa-
tially targeted interventions will require measuring tree
health and performance across the entire plantation, a
task that could be aided by remote-sensing data (Delalieux
et al. 2009, Sims et al. 2013, Vastaranta et al. 2014). Our
study system—young, homogenous stands in an experi-
mental forest—enabled us to determine whether tree
growth rates can be predicted from a single aerial image
across a range of species and environmental conditions.
We address two questions: (1) Is there a relationship
between spectral data and ADBH across twenty tropical
tree species that vary widely in functional traits and phy-
logeny? (2) Which spectral regions, associated with dif-
ferent canopy chemical and structural properties, are
important for predicting ADBH?

METHODS

The ADBH measurements are from an experiment
designed to quantify the effect of environmental variation
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on tree species suitability for restoration (Park et al.
2010). The experiment includes replicate plots in three
completely randomized, spatially separated blocks across
an elevation gradient (range 23-151 m) with different
topography and edaphic conditions. Our study takes
place in Los Santos Province in Southwestern Panama
(7°25'14.3" N, 80°09'49.1” W). The study site has a pro-
nounced dry season from December through March, with
an average of 1,700 mm of rainfall mostly falling during a
rainy season from late April to late November. Pure
species plots were planted with 20 seedlings of 1 of 20 tree
species in 2003, and thinned to 10 trees per plot in 2005.
Growth for all live tree stems in plots was measured as
ADBH between 2008 and 2010. The experimental
design ensures a range of intraspecific growth rates
across many species with diverse growth rates, functional
traits, and taxonomy, including 13 different families
(Appendix S1).

Remotely sensed data were collected in January 2012
by the Carnegie Airborne Observatory-2, usinga VSWIR
infrared spectrometer (380-2,510 nm) with 2-m reso-
lution and a dual-laser waveform LiDAR scanner with
1.3-m resolution (Appendix S2; Asner et al. 2012). In
December 2013 and July 2014, we mapped canopy
boundaries of each plot with a handheld GPS unit and
tablet displaying the aerial image (Fig. 1). In total, we
mapped 87 single-species plots with plot areas ranging
from 25 to 450 m2. Because the individual trees in our
study were relatively small, with a canopy area of 24.05 £
23.01 m2 (mean * SD), and could not be distinguished in
the images with confidence, matching pixels to individual
tree canopies, rather than single species plot boundaries,
was not possible.

The goal of our analysis was to predict plot-level
growth as a continuous variable for all 20 species
together. Absolute ADBH growth rates varied widely
between species (Appendix S1: Table S1), from
11.11 * 552 mm/yr for Colubrina glandulosa to
45.72 + 22.00 mm/yr for Erythrina fusca. To compare
fast and slow-growing plots across species, we stand-
ardized ADBH growth rates on individuals within each
species by centering around the mean and dividing by
two standard deviations (Gelman 2008). Plot-level
means of the standardized growth rate were then used as
the response variable in the model. After standardi-
zation, plots near the mean growth rate of each species
have a value of zero, while plots with growth rates two
standard deviations below and above the mean have
values of —1 and 1, respectively. This standardized
growth rate can be interpreted as an index of plot-level
growth rate, relative to plots of the same species. Using
standardized growth rate as the response variable in our
analyses increases our confidence that we are detecting
intraspecific variation in tree growth rate, rather than
species differences across our diverse set of 20 study
species. However, in Appendix S3, we demonstrate that
our approach can also predict absolute growth rate on
the original scale of mm/yr.
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Fic. 1.

Mapped tree plots. Each yellow polygon corresponds to one pure-species plot overlain on a digital elevation model

displaying hill shade. The visible color image displays a subset of the hyperspectral visible-to-shortwave infrared data.

Predictor variables included narrowband hyper-
spectral reflectance and elevation. To match the spatial
scale of the tree growth data, we aggregated elevation and
hyperspectral reflectance to the plot level by taking the
mean value of all pixels within each plot. Because we
expected growth rates to vary with elevation (Park et al.
2010), our model also includes per-plot elevation as a pre-
dictor variable, produced using a digital elevation model
(DEM) derived from the LIDAR data. We found no evi-
dence for spatial autocorrelation in the residuals of the
final model.

The high-dimensional structure of the hyperspectral
data, including multicollinearity (Asner et al. 2012),
presents a challenge to identifying clear predictive rela-
tionships. Narrowband indices of wavelengths represent
one way to construct predictor variables that can reduce
illumination differences between pixels and isolate
absorption features related to canopy chemistry (Shafri
and Hamdan 2009, Roberts et al. 2011). One approach
to identify narrowband indices with predictive power is

to evaluate the performance of all possible two-band
combinations (e.g., Delalieux et al. 2009). We build
upon this approach by iteratively selecting the single
narrowband index, defined here as the normalized dif-
ference between two narrowbands, with the best pre-
dictive power out of all possible narrowband indices
and compiling multiple narrowband indices with high
predictive power using least squares regression. We used
three strategies to avoid overfitting. First, we selected
individual narrowband indices using the predicted
residual sum of squares (PRESS) statistic, an out-of-
sample validation metric that penalizes for overfitting
(Chen et al. 2004). Second, we used a randomization test
to determine a cut-off for the number of narrowband
indices to include in the final model, based on the prob-
ability of observing a value of the PRESS statistic sig-
nificantly lower than random chance. Third, we evaluate
predictive power of the least squares algorithm using
leave-one-out cross-validation, and present out-of-
sample R2 and RMSE as metrics of model fit. We
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Predicted DBH growth

Species key
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Colubrina glandulosa
Cordia alliodora

Diphysia americana
Enterolobium cyclocarpum
Erythrina fusca

Gliricidia sepium
Guazuma ulmifolia
Luehea seemannii
Ochroma pyramidale
Pachira quinata

Samanea saman
Spondias mombin
Tabebuia guayacan
Tectonia grandis
Terminalia amazonia

0000000060000000000

I I I I I I
-06 -04 -02 00 02 04 06

Observed DBH growth

FiG. 2. Predicted growth rates from hyperspectral data vs. observed growth rates.

describe our least squares algorithm in more detail in
Appendix S4, and compare our results to those from
partial least squares regression, another approach for
analyzing high-dimensional data (e.g., Serbin et al.
2014, Asner et al. 2015, Singh et al. 2015), in Appendix
S3.

REsuLTs

Out-of-sample R2 for our final model was 53.70%, indi-
cating that a single image can predict landscape variation
in growth rates across 20 species (Fig. 2). In total, our
least squares algorithm selected six narrowband indices
to predict standardized growth rate (Appendix S4: Fig.
S2). We found diminishing returns in predictive power as
additional variables were added. Wavelengths selected
for narrowband indices in our growth index include the
entire range of the measured spectrum, from the visible
to shortwave regions. The first band index selected,
involving the near-infrared (NIR) and shortwave infrared
(SWIR) regions (810 and 2,122 nm) led to the biggest
increase in R2 (14.21%) and biggest proportional decrease
in the PRESS statistic (18.47%). However, five of these
six narrowband indices had one or both bands located in
the visible region (from 470 to 700 nm). Limiting the
wavelengths included in the least squares algorithm to the
visible region between 470 and 750 nm, a decrease in
dimensionality from 150 to 31 narrow bands, only
decreased R? by 5.54% (Appendix S5). Although a model
with elevation alone was poor at predicting growth, with
an R2 of 2.71%, elevation had a significant effect in the
full model (Appendix S6).

DiscussioN

We demonstrate the potential for airborne remote-
sensing data to quantify spatial variation in one metric of
tree demography (ADBH) at large spatial extents. Our
methods do not depend on the acquisition of a lengthy
time series of remote-sensing data or measurement of
foliar traits and, if repeatable at other sites, could be
immediately applied to existing and soon-to-be collected
(e.g., National Ecological Observatory Network; Keller
et al. 2008) hyperspectral images. While ADBH is a
common metric of tree demography due to the ease of
measuring stem diameter growth in the field, hyper-
spectral data could provide a wider range of metrics
linked to tree physiology, such as foliar nutrients (Ollinger
and Smith 2005, Axelsson et al. 2013, Sims et al. 2013,
Asner et al. 2015, Singh et al. 2015) and chlorophyll
fluorescence (Calderon et al. 2013). Our results extend
previous studies that demonstrate that a single remotely
sensed image can measure tree health and performance
for one, or perhaps a few, species (Pontius et al. 2008,
Delalieux et al. 2009, Shafri and Hamdan 2009), by sug-
gesting a general correlation between narrowband indices
and ADBH across a wide range of species with varying
functional traits at a single site. Although whether tree
growth can be measured remotely in mixed-age, mixed-
species forests remains an open question, our results
suggest that hyperspectral data can accurately predict
ADBH in even-aged monocultures, including tropical
tree plantations.

For all tree species considered together, the R2 for our
best-fitting model was 53.70%, with an RMSE of 2.46.
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The predictive power of a model for standardized growth
across species suggests that predicting whether a tree is a
fast or slow grower relative to conspecifics is possible
even when species identity is unknown. The wavelengths
selected in our growth index include the entire range of
the measured spectrum, from the visible to shortwave
regions. However, repeating the analysis without the
near-infrared and shortwave regions revealed that the
visible and shortest wavelengths of the near-infrared
regions (up to 750 nm) of the spectrum contribute the
majority of predictive power. We found that LiDAR-
derived elevation measurements initially contributed
very little to predictive power (R? for elevation-only
model = 2.71%), but nonetheless had a strong and signif-
icant effect in the full model (Appendix S6). At our study
site, topographic differences in soil quality and water
availability influence tree growth rates (Park et al. 2010).
Our results suggest that elevational differences may lead
to different canopy traits, such as leaf phenology or foliar
nutrients that influence remote detection of tree growth
rates.

The narrowband indices selected in our model suggest
canopy properties that may provide a link between reflec-
tance and growth that can form the basis for future inves-
tigations. Our study is a departure from previously used
approaches to relate optical remote sensing to forest pro-
ductivity that focus on the underlying mechanism of light
capture and efficiency (Garbulsky et al. 2011) or foliar
chemical composition (Ollinger and Smith 2005, Serbin
et al. 2014, Singh et al. 2015). The advantage of our
approach is that we are not constrained to specific wave-
lengths or measured foliar traits and can identify emergent
spectral regions and traits that may be driving growth for
a particular site or species. For example, the first band
index selected in our across-species analysis, involving
the NIR and SWIR regions (810 divided by 2,122 nm), is
indicative of water content, a key canopy trait affecting
both growth and reflectance (Roberts et al. 2011). Similar
narrowband indices related to water absorption have
been correlated with vegetation water content (Chen
etal. 2005), and we suggest that leaf water content is a key
variable for forest dynamics in this ecosystem that can be
measured with remote sensing. Another important
spectral region for predicting tree growth is between 470
and 750 nm, including five of the six narrowband indices
selected. These wavelengths measure pigments that play
a critical role in carbon uptake and photoprotection in
tropical trees (Contin et al. 2014), including chlorophyll,
carotenoids, and anthocyanins (Roberts et al. 2011). The
variation in pigments is likely related to leaf senescence
during the transition from the wet to dry season (when
the data was collected), and may be indicative of different
phenologic strategies of growth across species. If images
were collected at peak greenness, which is the case for
many data sources, wavelengths and traits may be more
likely to reflect differences in light capture and light use
efficiency. The identified wavelengths point to causal
explanations for the observed correlation between tree
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growth and remote-sensing data; hypotheses that can be
tested by pairing direct measurements of foliar chemistry
and other canopy properties with spectral data.

The applicability of using a single hyperspectral
image to discriminate growth differences needs to be
tested for other sites and forest types. Given the under-
lying relationship between growth and canopy chem-
istry (Cornelissen et al. 1997, Ollinger and Smith 2005),
and the growing body of evidence that canopy chem-
istry can be quantified from hyperspectral data (Sims
et al. 2013, Singh et al. 2015), we believe this approach
has strong potential to detect growth differences
between even-aged plots at other sites. Just as the
strongest wavelengths for determining leaf chemistry
may vary across sites (Casas et al. 2014), the exact wave-
length bands that are strongly related to growth will
likely vary across sites. Extending our methods to
predict ADBH for trees in a natural, mixed-age, mixed-
species forest will present several challenges. First, pre-
dicting tree growth rates in those forests may require
resolving individual tree canopies with advanced seg-
mentation techniques. Second, our results suggest that
we are capturing canopy spectral properties that are
important for tree growth rates of small plots of ~10
trees. Between these even-aged plots, variation in tree
growth is likely due to site factors (e.g., soil moisture).
In natural forests, individual variation in tree growth is
higher and related to competition for light between
different-sized trees, although variations in crown size
and height can be quantified by LiDAR and used as an
additional predictive variable (Kellner and Asner 2014).

The ability to quantify the state of a tree in fine detail
over large areas could be transformational both for our
basic understanding of forest dynamics and for many
applied forest management projects. One application of
remote-sensing detection of tree growth rates is precision
forestry, i.e., silvicultural treatments at landscape scales
tailored to observed growth variation. Previous remote-
sensing-based precision forestry has mostly focused on
assessing differences in standing stocks, typically
measured with LIDAR and radar data (Kellndorfer et al.
2003). We propose that hyperspectral imagery could
detect spatial differences in growth rate before differ-
ences in woody biomass are measurable. Predictive algo-
rithms based on aerial imagery could then enable
fine-scale interventions, for example, fertilizer treatments
for plots with low growth rates due to nutrient defi-
ciencies detected in leaf reflectance (Sims et al. 2013).
These kinds of early detection systems are well known in
agricultural systems, where remote sensing of crop per-
formance, followed by spatially targeted interventions,
can improve crop production while reducing external
inputs (Gebbers and Adamchuk 2010). We show here
that similar types of performance information for trees
can be derived from hyperspectral data, despite the
greater structural complexity and species diversity of
many forests. Our results point to a future where a single
flyover by an aerial observatory could provide data to
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inform spatial interventions and contribute to sustainable
decision making in forested ecosystems.

ACKNOWLEDGMENTS

We thank the Carnegie Airborne Observatory and
PRORENA staff for data collection and processing support.
Funding for PRORENA is from the Frank Levinson Family
Foundation and the School of Forestry and Environmental
Studies, Yale University. T. T. Caughlin was supported by NSF
grant #1415297. Airborne data collection, processing and anal-
ysis was funded by the Grantham Foundation for the Protection
of the Environment and William R. Hearst III. The Carnegie
Airborne Observatory has been made possible by grants and
donations to G.P. Asner from the Avatar Alliance Foundation,
Margaret A. Cargill Foundation, David and Lucile Packard
Foundation, Gordon and Betty Moore Foundation, Grantham
Foundation for the Protection of the Environment, W. M. Keck
Foundation, John D. and Catherine T. MacArthur Foundation,
Andrew Mellon Foundation, Mary Anne Nyburg Baker and
G. Leonard Baker Jr, and William R. Hearst III.

LiTERATURE CITED

Antonarakis, A. S., J. W. Munger, and P. R. Moorcroft. 2014.
Imaging spectroscopy- and lidar-derived estimates of canopy
composition and structure to improve predictions of forest
carbon fluxes and ecosystem dynamics. Geophysical Research
Letters 41:2013GL058373.

Asner, G. P., D. E. Knapp, J. Boardman, R. O. Green,
T. Kennedy-Bowdoin, M. Eastwood, R. E. Martin,
C. Anderson, and C. B. Field. 2012. Carnegie Airborne
Observatory-2: increasing science data dimensionality via
high-fidelity multi-sensor fusion. Remote Sensing of
Environment 124:454-465.

Asner, G. P., R. E. Martin, C. B. Anderson, and D. E. Knapp.
2015. Quantifying forest canopy traits: imaging spectroscopy
versus field survey. Remote Sensing of Environment
158:15-27.

Axelsson, C., A. K. Skidmore, M. Schlerf, A. Fauzi, and
W. Verhoef. 2013. Hyperspectral analysis of mangrove foliar
chemistry using PLSR and support vector regression.
International Journal of Remote Sensing 34:1724-1743.

Calderén, R., J. A. Navas-Cortés, C. Lucena, and P. J. Zarco-
Tejada. 2013. High-resolution airborne hyperspectral and
thermal imagery for early detection of Verticillium wilt of ol-
ive using fluorescence, temperature and narrow-band spectral
indices. Remote Sensing of Environment 139:231-245.

Casas, A., D. Riafio, S. L. Ustin, P. Dennison, and J. Salas.
2014. Estimation of water-related biochemical and biophysi-
cal vegetation properties using multitemporal airborne hyper-
spectral data and its comparison to MODIS spectral response.
Remote Sensing of Environment 148:28-41.

Caughlin, T. T., S. Elliott, and J. W. Lichstein. 2016. When does
seed limitation matter for scaling up reforestation from pat-
ches to landscapes? Ecological Applications, in press. DOI:
10.1002/eap.1410

Chen, S., X. Hong, C. J. Harris, and P. M. Sharkey. 2004.
Sparse modeling using orthogonal forward regression with
PRESS statistic and regularization. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics 34:
898-911.

Chen, D., J. Huang, and T. J. Jackson. 2005. Vegetation water
content estimation for corn and soybeans using spectral indi-
ces derived from MODIS near-and short-wave infrared
bands. Remote Sensing of Environment 98:225-236.

Ecological Applications
Vol. 26, No. 8

Clark, D. B., C. S. Castro, L. D. A. Alvarado, and J. M. Read.
2004. Quantifying mortality of tropical rain forest trees using
high-spatial-resolution satellite data. Ecology Letters
7:52-59.

Contin, D. R., H. H. Soriani, I. Hernandez, R. P. Furriel, S.
Munné-Bosch, and C. A. Martinez. 2014. Antioxidant and
photoprotective defenses in response to gradual water stress
under low and high irradiance in two Malvaceae tree species
used for tropical forest restoration. Trees 28:1705-1722.

Cornelissen, J. H. C., M. J. A. Werger, P. Castro-Diez, J. W. A.
Van Rheenen, and A. P. Rowland. 1997. Foliar nutrients in
relation to growth, allocation and leaf traits in seedlings of a
wide range of woody plant species and types. Oecologia
111:460-469.

Delalieux, S., B. Somers, W. W. Verstraeten, J. A. N. Van
Aardt, W. Keulemans, and P. Coppin. 2009. Hyperspectral
indices to diagnose leaf biotic stress of apple plants, consider-
ing leaf phenology. International Journal of Remote Sensing
30:1887-1912.

Dubayah, R. O., S. L. Sheldon, D. B. Clark, M. A. Hofton, J. B.
Blair, G. C. Hurtt, and R. L. Chazdon. 2010. Estimation of
tropical forest height and biomass dynamics using lidar re-
mote sensing at La Selva, Costa Rica. Journal of Geophysical
Research: Biogeosciences 115:GO0E09.

Fagan, M. E., R. S. DeFries, S. E. Sesnie, J. P. Arroyo-Mora,
C. Soto, A. Singh, P. A. Townsend, and R. L. Chazdon. 2015.
Mapping species composition of forests and tree plantations
in Northeastern Costa Rica with an integration of hyper-
spectral and multitemporal landsat imagery. Remote Sensing
7:5660-5696.

Garbulsky, M. F., J. Penuelas, J. Gamon, Y. Inoue, and
I. Filella. 2011. The photochemical reflectance index (PRI)
and the remote sensing of leaf, canopy and ecosystem radia-
tion use efficiencies: A review and meta-analysis. Remote
Sensing of Environment 115:281-297.

Gebbers, R., and V. I. Adamchuk. 2010. Precision agriculture
and food security. Science 327:828-831.

Gelman, A. 2008. Scaling regression inputs by dividing by two
standard deviations. Statistics in Medicine 27:2865-2873.

Hartley, M. J. 2002. Rationale and methods for conserving bio-
diversity in plantation forests. Forest Ecology and Manage-
ment 155:81-95.

Holl, K. D., and T. M. Aide. 2011. When and where to actively
restore ecosystems? Forest Ecology and Management 261:
1558-1563.

Keller, M., D. S. Schimel, W. W. Hargrove, and F. M. Hoffman.
2008. A continental strategy for the National Ecological
Observatory Network. Frontiers in Ecology and the Envir-
onment 6:282-284.

Kellndorfer, J. M., M. C. Dobson, J. D. Vona, and M. Clutter.
2003. Toward precision forestry: plot-level parameter
retrieval for slash pine plantations with JPL AIRSAR. IEEE
Transactions on Geoscience and Remote Sensing 41:
1571-1582.

Kellner, J. R., and G. P. Asner. 2009. Convergent structural
responses of tropical forests to diverse disturbance regimes.
Ecology Letters 12:887-897.

Kellner, J. R., and G. P. Asner. 2014. Winners and losers in the
competition for space in tropical forest canopies. Ecology
Letters 17:556-562.

Marvin, D. C., G. P. Asner, D. E. Knapp, C. B. Anderson,
R. E. Martin, F. Sinca, and R. Tupayachi. 2014. Amazonian
landscapes and the bias in field studies of forest structure and
biomass. Proceedings of the National Academy of Sciences
USA 111:E5224-E5232.

Ollinger, S. V., and M.-L. Smith. 2005. Net primary production
and canopy nitrogen in a temperate forest landscape: an


http://dx.doi.org/10.1002/eap.1410

December 2016

analysis using imaging spectroscopy, modeling and field data.
Ecosystems 8:760-778.

Park, A., M. van Breugel, M. S. Ashton, M. Wishnie,
E. Mariscal, J. Deago, D. Ibarra, N. Cedefio, and J. S. Hall.
2010. Local and regional environmental variation influences
the growth of tropical trees in selection trials in the Republic
of Panama. Forest Ecology and Management 260:12-21.

Pontius, J., M. Martin, L. Plourde, and R. Hallett. 2008.
Ash decline assessment in emerald ash borer-infested regions:
a test of tree-level, hyperspectral technologies. Remote
Sensing of Environment 112:2665-2676.

Purves, D., and S. Pacala. 2008. Predictive models of forest
dynamics. Science 320:1452-1453.

Roberts, D. A., K. L. Roth, and R. L. Perroy. 2011.
Hyperspectral vegetation indices. CRC Press, Boca Raton,
Florida, USA.

Serbin, S. P., A. Singh, B. E. McNeil, C. C. Kingdon, and P. A.
Townsend. 2014. Spectroscopic determination of leaf mor-
phological and biochemical traits for northern temperate and
boreal tree species. Ecological Applications 24:1651-1669.

Shafri, H. Z., and N. Hamdan. 2009. Hyperspectral imagery for
mapping disease infection in oil palm plantation using

HYPERSPECTRAL DATA PREDICTS TREE GROWTH 2373

vegetation indices and red edge techniques. American Journal
of Applied Sciences 6:1031-1035.

Sims, N. C., D. Culvenor, G. Newnham, N. C. Coops, and
P. Hopmans. 2013. Towards the operational use of satellite
hyperspectral image data for mapping nutrient status and fer-
tilizer requirements in Australian plantation forests. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 6:320-328.

Singh, A., S. P. Serbin, B. E. McNeil, C. C. Kingdon, and
P. A. Townsend. 2015. Imaging spectroscopy algorithms
for mapping canopy foliar chemical and morphological
traits and their uncertainties. Ecological Applications 25:
2180-2197.

Vastaranta, M., N. Saarinen, V. Kankare, M. Holopainen, H.
Kaartinen, J. Hyyppd, and H. Hyyppa. 2014. Multisource
single-tree inventory in the prediction of tree quality variables
and logging recoveries. Remote Sensing 6:3475-3491.

Yu, X., J. Hyyppa, A. Kukko, M. Maltamo, and H. Kaartinen.
2006. Change detection techniques for canopy height
growth measurements using airborne laser scanner data.
Photogrammetric Engineering & Remote Sensing 72:
1339-1348.

SUPPORTING INFORMATION

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.1436/suppinfo

DATA AVAILABILITY

Tree growth data are available online at http://dx.doi.org/10.5061/dryad.témd2. R code for the least squares algorithm is

available online at http://dx.doi.org/10.5281/zenodo.61972.

S
§
-
S
S\
=
=
)
>



http://onlinelibrary.wiley.com/doi/10.1002/eap.1436/suppinfo



