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Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, 
but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional 
forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic 
groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil 
pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species 
composition of early successional forests, which is mainly associated with biogeographic and environmental 
factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally 
restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and 
conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should 
use local species to assure that these distinct floras are maintained.

INTRODUCTION
Successional forests cover nearly 30% of the Neotropics and are 
expanding (1). These naturally regenerating forests are increasingly 
important for climate change mitigation (1) and for the restoration 
of biodiversity and ecosystem services in human-modified landscapes 
(2). Although these secondary forests harbor high species diversity, 
they contain only a subset of species from the regional species pool 
(2). Whether these secondary forests can help preserve the distinc-
tiveness of Neotropical bioregions (3) remains unknown.

Neotropical forests are the most species-rich forests in the world 
because of a mixing of North and South American biotas (4), and 
the intense biotic interchange between drier and wetter environments 
over evolutionary history (5). These interchanges—combined with 
processes of vicariance, speciation, long-distance dispersal, migration, 

and environmental filtering—have shaped the current species 
composition of Neotropical forests and its distinctive biogeographic 
regions (6, 7). Species exchange, dispersal, and migration across the 
Americas have been limited by the large continental distances and 
by orographic and climatic barriers that emerged in different 
moments in time. About 3 million years (Ma) ago, the North and 
South American continents were connected by the Panama Isthmus, 
intensifying species exchange. Important biogeographical barriers 
for forest species are the dry diagonal in South America, a region 
that has experienced a relatively stable arid climate since the Eocene 
(ca. 33 to 38 Ma), and the uplift of the Northern Andes along with 
the formation of associated dry environments (ca. 34 to 4 Ma) (8, 9).

In addition, environmental filtering imposed by Pleistocene 
climate variations (ca. 2.6 Ma to 11,000 years) and present climatic 
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and edaphic conditions constrain the establishment of new species, 
contributing to distinctive species assemblages within the continents 
(6, 10, 11). Climatic seasonality has been suggested to be the most 
important environmental condition defining the main boundaries 
of Neotropical bioregions (6), the floristic distinctions between 
neighboring evergreen, deciduous and semideciduous forests (12, 13), 
and the dominant functional traits of moist forests (14). Bio-
geographical patterns in floristic variation have been documented 
for old-growth forests (15–18), but not for the subset of species that 
colonize successional forests in human-modified landscapes across 
the Neotropics.

Along with historical and ecological processes, humans trans-
formed Neotropical ecosystems in the past ca. 10,000 years and 
strongly influenced their species composition through the inten-
tional or unintentional spread of some species and elimination of 

others (19, 20). Species with fruits used by humans have been spread out-
side their natural distribution range (19), like cocoa (Theobroma cacao) 
that originated in the Amazon and was largely cultivated in 
Mesoamerica in pre-Columbian times. Disturbance-adapted species 
might have been unintentionally favored by the different cycles of 
forest opening and regrowth over time. Indigenous people opened 
large tracts of forest landscapes to allow human settlements and 
agricultural fields, more intensively in Mesoamerica. Upon European 
arrival, the extermination of indigenous people led to the regrowth 
of 55.8 Mha of forests across the continents (21), expanding the area 
that could be colonized by early successional species. These regrowing 
forests were partially cleared again to give place to croplands and 
pastures, whose area expanded exponentially from the 17th century 
onward (22), with the fastest conversion rates during the 20th 
century (23, 24). Landscapes have been since reconfigured by shifting 
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cultivation, land-use conversion, fires, and forest exploitation, leading 
to further reduction of old-growth forest area (19, 23, 24) and 
expansion of habitats favorable to disturbance-dependent early 
successional species. These transformations may also disfavor 
forest-dependent late successional species, creating landscapes 
dominated by early successional ones (25).

The combination of the expanding extent of regrowth with 
the reproductive and growth strategies of early successional species 
may increase their chances of getting dispersed across the conti-
nents (26). Early successional species have fast growth rates and 
short life cycles, and produce large amounts of seeds within a few 
years after establishment. Most of these species produce small seeds 
dispersed by wind or by generalist frugivores (27), allowing them to 
be dispersed easily and potentially over longer distances and across 
biogeographic barriers. Most of these seeds exhibit dormancy, 
which allows survival under adverse conditions (28). Over evolu-
tionary history, these traits might have allowed early successional 
taxa to migrate across the continents and then speciate by vicariance 
when geographical or climatic barriers formed, or radiate following 
the development of adaptations to contrasting environmental con-
ditions (29). Both possibilities would contribute to distinct species 
composition across the continents. The widespread pioneer genus 
Cecropia, for example, expanded its distribution range because of 
long-distance dispersal events (26) and spread over the Neotropics 
before the onset of the Andean uplift, after which it radiated into 
more than 60 species with varying distribution ranges (30). Never-
theless, if dispersal events are recent and/or mediated by humans, 
there might not be enough time for speciation and the same 
species would be found repeatedly across the Neotropical realm. 
Guazuma ulmifolia, for example, is commonly found regenerating 
in pastures across Neotropical regions and over a wide range of 
environmental conditions (31). Rapid and recent dispersal could 
result in secondary forests with similar floristic composition across 
the Americas, undermining the continental-scale diversity of 
Neotropical floras.

To elucidate the patterns of floristic differentiation across 
Neotropical successional forests, we address these questions: (i) How 
distinct are early successional assemblages across the Neotropics, 
how many floristic groups do they form, and where are they situated? 
(ii) How are geographical, environmental, and anthropogenic 
factors associated with these early successional floristic groups? We 
hypothesized that if anthropogenic transformations have expanded 
the geographical ranges of early successional species, we would find 
strong similarities in species composition across the Neotropics. 
These floristic groups would be associated with anthropogenic and 
environmental factors and should cover large areas, because both 
long-distance dispersal traits and anthropogenic-driven expansion of 
favorable habitats would have obscured the signal of biogeographic 
history but not of environmental filtering. Processes occurring at 
different time scales, mediated by environmental filtering, dispersal 
limitation, and anthropogenic transformations, may define the 
current floristic composition of successional forests. Therefore, we 
explore the floristic dissimilarity at genus and species level to get 
insights into the underlying processes of floristic differentiation.

We used the largest database of lowland tropical secondary 
forests (2ndFOR) based on 1215 plot surveys and 102,834 trees to 
characterize the genus and species composition of 75 human-modified 
landscapes across dry, seasonally dry, moist, and wet Neotropical 
forests. Each landscape is composed of multiple secondary forests 

with time since abandonment ranging from 1 to 20 years, which is 
the most common age range in the Neotropics (1). Thus, these 
landscapes encompass the set of species found in chronosequences 
spanning 20 years of succession. We calculated the floristic dissimi-
larity of the 75 landscapes using the Simpson dissimilarity index 
applied separately to species and genus occurrence. Landscapes 
were then clustered on the basis of their dissimilarity using the 
unweighted pair group method with arithmetic mean (UPGMA). 
We described the taxonomic composition of clusters focusing on 
the widespread genera and species. Next, we used a machine learning 
approach to identify how environmental factors (climatic and edaphic 
conditions), anthropogenic impacts (previous land-use history, 
forest cover, and human footprint), and geographical location 
(related to dispersal limitation) are associated with the floristic groups. 
Last, we discuss the implications of our findings for restoring and 
preserving Neotropical bioregions.

RESULTS
Early successional floristic groups
The young successional forests had 2164 species and 680 genera. 
Landscapes across the Neotropics showed high floristic dissimilarity 
in species composition (mean ± SD: 0.90 ± 0.12) and genus compo-
sition (0.72 ± 0.17). The clustering of landscapes based on their 
genera and species composition is explored at two levels of explained 
dissimilarity: Higher-level clusters (hereafter “clusters”) that explain 
around 60% of the floristic variation are further split into lower-level 
clusters (hereafter “groups”) that explain 90% of the variation (figs. 
S2 and S5). We explore the higher-level clusters because at around 
60% of dissimilarity explained, a small number of clusters explain a 
large proportion of the dissimilarity (figs. S2 and S5). Clustering 
based on genus composition resulted in four higher-level clusters 
explaining 67% of floristic variation and 18 lower-level groups 
explaining 91% of floristic variation (figs. S4 to S6). Clusters defined 
on the basis of genus and species composition were consistent with 
a supplementary network analysis (Supplementary Text and figs. 
S12 and S13).

A considerable proportion of the floristic variation at the species 
level (66%; fig. S2) was explained by four higher-level clusters that 
separated the early successional communities into Dry Forest 
cluster, Southern South America, Equatorial Moist Forests, and 
Middle America (Fig.  1A and fig. S1). The Dry Forest cluster 
contains a single landscape located within the Caatinga biome, and 
had the most distinctive floristic composition, forming the first split, 
which explains 3% of the total variation in the data. The second node 
separates Southern South America, which includes semideciduous 
forests and moist subtropical Atlantic forests (explaining 27% of the 
dissimilarity). Last, the moist and wet forests of Equatorial Moist 
Forests were separated from the Middle America cluster, which 
includes dry, moist, and wet forests (explaining an additional 39% 
of the dissimilarity in the data; fig. S2). Between-group dissimilarity 
(mean, 0.97) was significantly higher than within-group dissimilarity 
(mean, 0.81) [analysis of similarities (ANOSIM) P = 0.001, R = 0.72; 
the ANOSIM statistic R varies from 0 to 1, with higher values 
indicating higher between-group dissimilarities (32)]. The Middle 
America cluster includes large floristic variation despite the smaller 
area covered by it (fig. S3).

A total of 14 lower-level floristic groups were needed to explain 
90% of the floristic dissimilarity of species across landscapes 
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(Fig. 1, B and D, and fig. S1). Ten groups contained multiple land-
scapes, whereas four groups were made of single landscapes, such 
as the Dry Forest cluster that only contains one Landscape repre-
senting the Caatinga biome. The Southern South America cluster 
was divided into three groups: Deciduous Atlantic Forest, Moist-Dry 
South America, and Southern Atlantic Forest. The Equatorial Moist 
Forest cluster was divided into five groups: Wet Central America, 
Moist Colombia, Amazon forest, Moist North Atlantic Forest, and 
Moist Puerto Rico. Last, the smaller land area of Middle America 
cluster was divided into five floristic groups: Dry Western Mexico, 
Moist-Dry Mexico & Caribbean, Dry Central America & Northern 
South America, and two locally occurring groups—the Wet 
Mountainous group (composed by a landscape within the Mexican 
Chinantla region) and the Landscape Cesar (which is a moist forest 
in Northern Colombia) (Fig. 1B). Between-group dissimilarity (0.93) 
was significantly higher than within-group dissimilarity (mean, 0.69), 
supporting the floristic groups (ANOSIM P = 0.001, R = 0.88).

Taxonomic composition of floristic groups
Across the 14 lower-level floristic groups, the moist and wet forests 
of Central America and the Amazon shared more species with 
other floristic groups than the dry forests and the South Atlantic 
forests (Fig. 2A). The Dry Forest containing the Caatinga land-
scape was the most distinctive floristic group, having only one spe-
cies shared (Mimosa tenuifolia) with one other group (Dry Western 
Mexico) (Fig. 2A). Note that the number of shared species is directly 
related to the number of landscapes comprised in the floristic 
groups (fig. S7), as the larger the sample size (in total sampled area 
or number of landscapes), the higher the number of species sam-
pled and the higher the chance of having a species shared with 
another floristic group. However, floristic groups with similar sam-
ple sizes had very different numbers of shared species (Fig. 2A), 
providing support for the higher proportion of endemism in dry 
forests and in South Atlantic forests compared to moist and wet 
forests (Fig. 2A).

Fig. 1. Clustering of landscapes based on the species composition of early successional communities. (A) Higher-level clusters (four floristic groups) explaining 60% 
of the variation in floristic species composition. (B) Lower-level groups explaining 90% of the variation in floristic species composition (14 floristic groups). The location of 
moist and dry forests as well as the two major biogeographical barriers [the Andes at the northwest of South America and the dry savannas (beige background)] are 
shown in (A) and (B). For each cluster level, the dendrogram provided shows the mean Simpson dissimilarity values and relationships among the four higher-level clusters 
(C) and among the 14 lower-level groups (D). Please note different scales of Simpson dissimilarity in (C) and (D). The consensus cluster with landscapes as tips is provided 
in fig. S1. CA, Central America; SA, South America.
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Most species (1729 species; 80%) were found in only 1 of 14 
floristic groups, with only 20% of the species (434 species) found in 
two or more floristic groups (Fig. 2B). Widespread genera occur-
ring in at least 10 floristic groups were Cordia (12 groups) and 
Casearia (11 groups) followed by Annona, Cupania, Inga, Miconia, 
Ocotea, Trichilia, and Zanthoxylum (found in 10 floristic groups; 
fig. S8). The widespread genera were also the most diverse ones 
(fig. S8), but the widespread species did not necessarily belong to 
these large genera. Four widespread species were found in at least 
eight floristic groups: Casearia sylvestris found in nine groups and 
Trema micrantha, G. ulmifolia, and Myrcia splendens found in 
eight groups (Fig. 2C). These species occurred most frequently in 
evergreen and semideciduous forests, and less frequently in dry 
deciduous forests (Fig. 2C).

Factors associated with floristic clusters and groups
We used a random forest classifier to assess which variables best 
predict the association of plots to the 14 lower-level floristic groups. 
The best variables are those that yield more homogeneous groups 
and higher prediction accuracy and, therefore, when excluded from 
the analyses, cause a greater decrease in the Gini coefficient and in 

prediction accuracy (33). Analyses based on random forest classifiers 
showed that floristic variation was significantly associated with 
geographic location and climatic and edaphic factors, with no 
significant effect of anthropogenic factors. Higher-level clusters for 
genus composition were significantly associated with soil pH 
followed by latitude, longitude followed by temperature seasonality, 
climatic water deficit (CWD), elevation, and annual precipitation 
(pseudo-R2  =  56%; fig. S6C). Soil pH had the highest variable 
importance because it is consistently higher in drier than wetter 
forests (table S2), separating the higher-level clusters of Moist 
Forests and the Dry Forests & Middle America (fig. S6A).

Clustering based on species composition was more strongly 
associated with geographical location (Fig. 3). The random forest 
classifier predicted the four higher-level clusters and the 14 species-
based floristic groups with low error rates (pseudo-R2 = 82.0 and 
74.0, respectively). Higher-level clusters were significantly associated 
with latitude, followed by longitude, soil pH, temperature seasonality, 
CWD, and annual precipitation, in decreasing order of variable 
importance (Fig. 3A). Lower-level groups were significantly associated 
with longitude followed by latitude, temperature seasonality, soil pH, 
soil N, CWD, and annual precipitation (Fig. 3B).
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Fig. 2. Species frequency and occurrence across floristic groups. (A) Contribution of each floristic group to the species shared across Neotropical early successional 
communities. The bars show the proportion of species shared between at least two floristic groups (434 species) that occur in a given floristic group. For example, the 
group Wet Central America contains 47% of the species shared with at least one other group. The number of landscapes included in each floristic group is indicated on 
the right side of the bars. (B) Rank-frequency curve for the 2163 species in the database. (C) List of the most widespread species, which occur in five or more floristic 
groups, and their occurrence in the 14 floristic groups. Species names are ordered according to the number of floristic groups they occur, followed by alphabetic order. 
Colors refer to the four higher-level floristic clusters in Fig. 1: Dry Forest—Caatinga (yellow), Southern South America (purple), Equatorial Moist Forests (orange), and 
Middle America (blue).
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Interactions between latitude and longitude as well as between 
each of them and the other significant factors were among the 30 
most frequent interactions in the random forest trees. This means 
that the splits in random forest trees defined by geographical loca-
tion (latitude or longitude) were often followed by splits defined by 
environmental conditions. A complementary random forest analysis 
including Morrone bioregions as a factor (fig. S9) showed that 
bioregions became the most important factor associated with 
species lower-level floristic groups (fig. S10). This is probably because 
although bioregions are associated to environmental conditions, 
they additionally include the biogeographic history (e.g., migrations, 
speciation, extinction, and vicariance processes) (3). Together, these 
results suggest a hierarchical association where floristic groups 
based on species are first (and strongly) associated with geographic 
location, potentially as a result of biogeographic history and dispersal 
limitation, and then with environmental conditions.

DISCUSSION
Early successional communities across the Neotropical realm 
harbor a large number of species, have high levels of floristic dissimi-
larity, and form 14 distinctive floristic groups. The clustering of early 
successional communities at different taxonomic levels suggests a 
hierarchy of processes governing floristic distinctiveness across the 
two continents and over evolutionary history. While genus-level 
composition was strongly associated with environmental condi-
tions (mainly soil pH and mean annual precipitation), clustering at 
the species level was mainly associated with geographical location 
and bioregion (fig. S10). Early successional assemblages, therefore, 
remain strongly dissimilar across the Neotropical realm despite the 
long-distance dispersal capacity of most pioneer species, their ability 
to colonize and grow fast, and the human-induced expansion and 
increase in connectivity of their habitats. Biogeographic history and 
ecological filtering have been stronger than human transformations 
in shaping the species composition of secondary forests across the 
continents.

Despite the ancient anthropogenic influence on Neotropical 
forests (20), and the opening of large tracts of forest intensified in 
the 20th century (19), apparently not enough time has lapsed to exert 

a substantial influence on the overall floristic distinctiveness across 
the two continents. However, there is evidence that some species 
that widely spread across Neotropical secondary forests (Fig. 2C) 
have been carried around or favored by humans. Examples are the 
widespread fruits mango (Mangifera indica), originally from 
Asia, and guava (Psidium guajava), originally from South America 
(34). Other widespread species such as C. sylvestris, T. micrantha, 
and G. ulmifolia (Fig. 2C) have broad environmental tolerances, 
are dispersed by generalist birds, successfully colonize pasture-
lands (31, 35), and can be locally useful (20). The role of humans 
on the current distribution of such species should be further 
investigated.

What factors are associated with lower-level 
floristic groups?
The main factors associated with the 14 floristic groups of species 
composition were location and climatic and edaphic conditions, 
similar to patterns found for old-growth forests (6, 11, 36). Factors 
related to anthropogenic impact (previous land-use type, landscape 
forest cover, and human footprint) were not significantly associated 
with floristic groups. Together, our results indicate that biogeographic 
history and ecological filtering, rather than anthropogenic impact, 
drive variation in species composition of early successional forests 
at the continental scale in the Neotropics.

It is important to note that our dataset is mostly comprised by 
landscapes with relatively high forest cover (range of 26 to 99%; 
table S2) and low previous land-use intensity (fig. S2). Degraded 
landscapes may have lower species diversity and lower floristic 
dissimilarity because anthropogenic impacts narrow down the 
subset of species able to establish in secondary forests (37–39). 
Nevertheless, secondary forests on highly transformed landscapes 
have also shown high floristic variation, i.e., high beta-diversity 
(40, 41), potentially as a result of combinations of stochastic and 
deterministic processes acting upon the local species pool (42). 
Future studies should include a broad gradient of forest cover and 
land-use intensity to evaluate whether the floristic distinctiveness of 
secondary forests is reduced with anthropogenic impact or whether 
the patterns found here still hold because the successional species 
are a subset of the local species pool (2, 43).

BA

Fig. 3. Relative importance of factors for the classification of floristic groups based on species occurrence. Factors associated with the four higher-level clusters 
(A) and the 14 lower-level groups (B). The most important factors for predicting the classification are the ones that yield the largest decrease in Gini coefficient and in 
accuracy when they are left out of the model. Labels are provided for the significant factors.
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Geographic location had the highest variable importance for 
all floristic groups (table S2), suggesting a strong association of the 
successional flora with biogeographic history and dispersal limita-
tion. Location summarizes multiple spatially structured factors, 
including environmental conditions and constraints to species dis-
persal and migration over evolutionary history (44, 45). Although 
we cannot disentangle the effects of these factors, the strong explana-
tory power of geography suggests an important effect of dispersal 
limitation for explaining the variation in the floristic composition 
of secondary forests at the continental scale. In addition, the high 
environmental affinity of genus composition (fig. S6) and the 
restricted distribution of species belonging to widespread genera 
(fig. S8) suggest that speciation, resulting from dispersal constraints, 
partially underlies the variation in species composition of succes-
sional forests.

After geographical location, temperature seasonality is the most 
important factor separating multiple floristic regions (table S3), and 
especially the Southern Atlantic Forests from the rest (Fig. 1, A and B, 
and table S3). Temperature seasonality increases with latitude and 
defines bioregion boundaries across the globe, across Neotropical 
old-growth forests (46), and specifically between the Amazon and 
(sub)tropical Southern Atlantic Forest (6, 14). Southern Neotropical 
forests have experienced seasonal climates over evolutionary history 
(47), resulting in a tree community with different functional traits 
than the other moist Neotropical forests (14). Low winter tempera-
tures may limit the occurrence of Amazonian species and define the 
distribution limits of key Southern Atlantic Forest species such as 
the gymnosperm Araucaria angustifolia (Bertol.) Kuntze.

Soil conditions were the next most important factor, with low 
soil pH separating the weathered acidic soils of the Amazon region 
and high soil N concentration separating the fertile volcanic soils of 
Middle America (tables S2 and S3). The low soil pH of the Amazon 
floristic region (table S2) correlates with low nutrient availability 
(especially phosphorus), affecting plant species distribution (48). 
Although fertile soils and soils with higher pH are generally associ-
ated with drier climates [(49); table S2], nitrogen concentration was 
substantially higher and significantly associated with floristic regions 
located in Middle America that include dry (Dry Central America & 
Northern South America), moist (Moist-Dry Mexican & Caribbean, 
Wet Central America, Moist Puerto Rico), and wet forests (Wet 
Mountainous) (table S2).

Water availability was less important than soils in defining the 
floristic groups based on species (Fig. 3), but was important for 
genus composition (fig. S6, C and D). CWD was an important 
factor separating the driest forests of the Caatinga and Dry Western 
Mexico (table S2). These dry forests have the lowest values of annual 
precipitation (<900 mm) and highest CWD (<−920 mm/year) 
(table S2). The early successional communities in these regions 
have a strongly distinct genera and species composition compared 
to neighboring less-dry, moist, and wet forests (Fig. 1, B and D, and 
fig. S6), in agreement with the separate phylogenetic origin of 
dry forests (13, 50) and the high levels of endemism found in the 
Caatinga (17). This supports the idea that a strong deficit in water 
availability is an important environmental filter defining the floristic 
composition of deciduous dry forests (13), thus restricting the 
similarity with neighboring less-dry forests (Fig. 1D). Conversely, 
forests under intermediate climatic conditions may be more likely 
to exchange species and therefore be more susceptible to biotic 
homogenization.

Long-term environmental filtering and recent dispersal 
limitation define floristic variation in early secondary forests
The clustering of early successional communities based on different 
taxonomic levels suggests a hierarchy of processes governing the 
floristic distinctiveness across the continents. The floristic variation 
at the genus level shows a high dispersal capacity across the conti-
nents, with higher-level clusters spread over broad latitudinal ranges, 
and a strong association with environmental conditions of soil pH 
and temperature seasonality (fig. S6, A and C). The higher- and 
lower-level floristic clusters based on species, on the other hand, 
are mainly associated with geographical location (Fig.  3) and 
bioregions (fig. S10B).

Clustering based on both genus and species agrees on the dis-
tinctiveness of the Southern South American cluster (Fig. 1 and 
fig. S6), suggesting an old radiation of these early successional 
assemblages and a prevailing effect of temperature seasonality in 
defining floristic composition (Fig. 3, A and B; fig. S6; and table S3). 
The other higher-level floristic clusters are associated with soil pH 
for the genus-level clustering and with geographical location for the 
species-level clustering. These results corroborate previous findings 
that phylogenetic turnover is strongly associated with environmental 
conditions, while species turnover is more related to spatial distance 
(15, 45, 51). Combined, these results suggest a key role of environ-
mental filtering in selecting widespread higher-level taxa and of 
dispersal limitation in contributing to species diversification and 
ultimately to the high floristic dissimilarity in present-day early 
secondary forests.

Biogeographic history influences early successional forests
The higher-level clusters based on species composition reflect the 
biogeographic history of Neotropical flora, agreeing with previous 
biogeographic evidence of the dry diagonal separating the Southern 
Atlantic forests (Fig. 1A) (52, 53). The so-called dry diagonal is a 
large region with relatively stable dry environmental conditions 
since the Eocene, which is today covered by the Cerrado and 
Caatinga. The dry diagonal has served as an important biogeographical 
barrier between the Southern Atlantic Forest and the Amazon 
throughout the evolutionary history of different taxonomic groups 
(52). This barrier has been less important in its northern portion, 
where a moist forest corridor has connected the Amazon to the 
Northern Atlantic Forest region during wetter periods over evolu-
tionary history (7). This may explain the higher similarity of genera 
and species between the early successional communities of the 
Northern Atlantic Forest and the Amazon (Fig. 1D), agreeing with 
patterns found in old-growth forest assemblages (52, 53).

The other important distinction, between Equatorial Moist 
Forests and the floristic group of Middle America, agrees with the 
different origins of North and South American taxa (4, 54). Lower-
level groups for both genus and species composition show a clear 
distinction between South America and Middle America floristic 
groups (Fig. 1D), suggesting that the Andes had acted as a major 
barrier restricting species exchange and delimitating bioregions 
(3, 17). Moist and dry forests of Northern South America are more 
similar to those of Central and Middle America than to those of 
Amazonian or Atlantic forest groups (Fig. 1D). Although some 
species, usually the most locally abundant ones, are able to cross 
over the mountain range (7), overall early successional assemblages 
remain rather divergent. Moreover, the lower-level floristic groups 
of secondary forests identified here agree with the Neotropical 
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bioregions proposed by Morrone (3) (figs. S9 and S10) and mostly 
coincide with floristic groups identified for lowland forest tree 
communities (16). Using a unique dataset on the species composi-
tion of successional forests, we show that present-day early succes-
sional communities still maintain the biogeographic signature of 
Neotropical floras.

Implications for forest restoration
Our results indicate that forests that regrow naturally on abandoned 
agricultural fields can contribute to the restoration and conservation 
of distinct Neotropical bioregions. Active restoration projects that 
plant or favor species outside their natural ranges can reduce these 
broad-scale diversity patterns and contribute to homogenization. 
For example, species belonging to the same genus may thrive under 
similar environmental conditions but in different regions (fig. S7). 
Typical pioneer genera like Miconia and Inga, for example, are 
highly diverse (fig. S8), having different species represented in each 
floristic group. This diversity underlies the distinctiveness of 
bioregions and should be considered when defining target species 
in restoration programs. Guaranteeing the regeneration of locally 
restricted species (especially from these diverse and widespread 
genera) is therefore crucial for conserving the broad-scale diversity 
of Neotropical flora.

Despite the many geographically restricted species, there are a 
few species with broad distributions over seasonally dry to wet 
climates, like G. ulmifolia, T. micrantha, Ochroma pyramidale, 
P. guajava, and Cordia alliodora (Fig.  2C). These species are 
commonly used in restoration projects, probably because of their 
tolerance to contrasting environmental conditions. Some of these 
species are invasive in other continents (e.g., G. ulmifolia in India 
and P. guajava in Africa and Oceania) (55, 56) and could become 
problematic outside of their natural range. Future studies should 
investigate the natural distribution range of these species, and why 
they are so successful, to provide guidance for the selection of 
species for restoration projects aiming for restoring and conserving 
the local flora.

Last, our analysis has shown that soil pH, temperature, and 
climatic water availability are strong determinants of species com-
position of secondary forests. As land use modifies soil conditions 
and climate change leads to a global increase in temperature and 
larger variation in water availability (57), global changes may in-
duce shifts in species composition, potentially reducing floristic 
distinctiveness across the continents. Since young secondary forests 
represent the first step in forest succession and regeneration, this 
may have large consequences for the functioning of future old-growth 
forests, potentially leading to biotic homogenization and loss of 
biodiversity and forest resilience.

MATERIALS AND METHODS
Dataset
Floristic composition of young secondary forests (1 to 20 years after 
agricultural land use ceased) was described for 75 sites in 10 coun-
tries across the Neotropics, ranging from Central Mexico to Southern 
Brazil and including the Caribbean islands. The Caribbean islands 
are included here as they have played a key role in bridging the 
North and South American plates over the geological history of the 
continents (4, 58). Across sites, annual precipitation varied from 
637 to 6387 mm, mean annual temperature from 14.8° to 27.7°C, 

and soil cation exchange capacity from 7.7 to 35.4 cmol(c)/kg, thus 
covering a wide range of environmental conditions and forest types 
(dry, seasonally dry, moist, and wet). Each sample is composed of a 
chronosequence of secondary forests with different ages. We selected 
only young secondary forests up to and including 20 years old, 
because human-modified landscapes are highly dynamic and most 
secondary forests persist less than 20 years in the landscape (1, 59). 
We pooled the species lists of each site to represent the species pool 
during the first 20 years of succession in that particular landscape. 
Landscape is our sampling unit for the clustering analysis. In total, 
we sampled 102,834 trees in 1215 plots across 75 landscapes. Inclu-
sion criterion was ≥5 cm stem diameter at 1.3 m height (dbh) in 
most landscapes, with only six landscapes including only trees with 
≥10 cm dbh. Sampled area in each landscape varies between 0.075 
and 9.250 ha (1.32 ha, mean ± 1.70 SD; 0.7 ha, median). All land-
scapes had high sample completeness, suggesting that they include 
a large proportion of the estimated species pool (60). Species coverage, 
a measure of sample completeness, ranges from 0 to 1 and measures 
the “proportion of the total number of individuals in a community 
that belong to the species represented in the sample” (60). 
Sample coverage varied between 0.71 and 1.00 across landscapes 
(mean ± SD: 0.96 ± 0.04; median: 0.97), confirming that the samples 
are representative of the species composition of local early 
secondary forests.

The dataset contained 2306 morphospecies, of which 2163 (94%) 
were identified to species level and used in the analysis. We followed 
the classification system of the Angiosperm Phylogeny Group IV 
(61). We corrected misspellings, updated species names, and 
standardized synonyms across the database using the most recently 
updated taxonomic resources for the Neotropics such as the ATDN 
species checklist (62), TNRS (version 4.1) (63), Tropicos (version 
3.2.3) (64), and Flora do Brasil 2020 (version from January 2021) 
(65). When accepted species names differed between databases, 
the name in the most recently updated database prevailed. The 
complete species checklist of Neotropical secondary forests of the 
2ndFOR network is available upon request from the correspond-
ing author.

Clustering of early successional communities
We described species composition based on species occurrences. 
Species turnover across landscapes was quantified using the Simpson 
dissimilarity index because it is independent of differences in 
species richness across landscapes and therefore represents pure 
species replacement (66). The dissimilarity matrix was then used to 
cluster landscapes using a consensus tree based on UPGMA, imple-
mented in the R package “recluster” (67). This approach removes 
the bias in clustering related to the order of sites in the database and 
allows the estimation of bootstrap coefficients for node support. By 
resampling the order of sites in the original dissimilarity matrix, it 
creates multiple cluster trees that are used to build a consensus tree 
that is independent of sampling order. The consensus tree was 
based on 100 trees and included only nodes found with a frequency 
of ≥50% across trees (0.5 threshold parameter). The final number 
of clusters used was based on the number of clusters needed to 
explain most (90%) of the dissimilarity in species composition. To 
evaluate the consistency of clusters, we tested whether the dissimi-
larity was higher between clusters than within clusters with an 
ANOSIM using the vegan package for R. In addition, we conducted 
a principal coordinates analysis (PCoA) based on the same Simpson 
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dissimilarity index to allow visualization of the floristic distances 
across clusters (fig. S3). To further explore the floristic patterns and 
evaluate the drivers of floristic dissimilarity, we followed the same 
clustering procedure based on the list of genera. Last, to validate 
the resulting clustering, we performed a network analysis using the 
modularity method and the spinglass algorithm to identify groups 
of sites based on their species composition. We used the R packages 
NetworkToolbox, networktools, and igraph (68–70). The results of 
the network analysis and comparison with cluster approach are 
presented in the Supplementary Text (figs. S12 and S13).

Factors associated with the spatial distribution of early 
successional communities
To assess how geographic, environmental, and anthropogenic 
factors are associated with the floristic clusters, we used a random 
forest classifier (33). We applied the random forest algorithm to all 
1215 secondary forest plots to make use of more precise predictor 
information instead of averages over landscapes. The random forest 
algorithm tested how different variables correctly classify the plots 
into the predefined floristic groups found for species composition 
and for genera composition, by randomly selecting a set of variables 
in each of the 1000 trees built. On the basis of all trees produced, the 
accuracy of the final random forest model was assessed as the out-
of-bag (OOB) error rate subtracted from 100 (pseudo-R2). The OOB 
error rate is the percentage of incorrectly classified samples (land-
scapes) into groups (floristic groups) in an iterative randomized sam-
ple selection (OOB sample) (33).

Variable importance in the random forest models was verified 
by the decrease in node impurity (measured by the Gini index), the 
decrease in accuracy, and its associated significance value (P value). 
The Gini index measures the mean decrease in node homogeneity 
when the variable is used. The decrease in accuracy is measured as 
the OOB error rate when the variable is not used. The higher the 
values of both measures, the higher the importance of a given 
variable (33).

We compiled 23 variables representing climatic, edaphic, and 
anthropogenic factors plus latitude and longitude (to account for 
spatial autocorrelation) and biogeographic regions [provinces 
proposed by Morrone (3, 71)]. Climatic variables included in the 
analyses were the aridity index (72), CWD (73), mean annual 
temperature, temperature seasonality, annual precipitation and 
precipitation seasonality, precipitation in the warmer quarter of the 
year, and temperature in the driest quarter of the year from the 
Chelsa bioclimatic variables database (74). Edaphic variables were 
soil bulk density; cation exchange capacity; clay, silt, and sand 
content; nitrogen content; pH; and organic carbon density from the 
SoilGrids database (75). Topography was represented by elevation 
and slope from the U.S. Geological Survey global multiresolution 
terrain elevation data version 2010 (76). Anthropogenic impact was 
represented by the accumulated human footprint in the year 2009 
(77), the human modification index (78), previous land-use history, 
and forest cover in the surrounding landscape. Previous land-use 
history was represented by five categories, according to information 
acquired by the sites’ research teams: clear cut (clear cut and burned 
but not cultivated), shifting cultivation (small-scale swidden-fallow 
agriculture), pasture (low-intensity cattle ranching), shifting culti-
vation and pasture (over the land-use period, both systems were 
applied), and high-intensity land use (conventional agriculture or 
pasture with use of machinery). The percentage of forest cover 

in the landscape was estimated within a 5-km buffer around each 
plot [buffer radii defined as suggested in (79)]. Forest cover maps 
were derived from the Copernicus Global Land Cover Layer collec-
tion 3 (80). Last, the plot successional age was expressed as the 
number of years since management had ceased. Plot age was ac-
quired through interviews with land owners and/or through remote 
sensing by the local team. All variables but successional age, previ-
ous land-use history, and forest cover were extracted from the spa-
tial databases using a 100-m buffer around the centroid of each plot.

Before analysis, we applied a variable selection procedure to 
reduce the number of variables to avoid model overfitting and the 
selection of spurious variables during permutation. We first pre-
served only variables that had correlation coefficients lower than 
ca. 0.70, with most values being lower than 0.5 (fig. S11). Second, we 
ranked the variables based on their variable importance score (VI) 
calculated on the basis of permutation and eliminated unimportant 
variables, which had average VI values lower than the threshold [for 
threshold calculations, see (81)]. Next, variables were sequentially 
included in the random forest models, and model OOB error rates 
were calculated. Selected variables were the ones with the highest VI 
and leading to higher model accuracy (based on OOB error). 
Variable selection was done using the VSURF R package (82). All 
analyses were done using R version 4.0 (83). The final variables used 
in the analyses are listed in table S2.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn1767

View/request a protocol for this paper from Bio-protocol.
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